

Knowledge Organisers

Year 10 Summer Term 2023

Name:

Using your Knowledge Organiser in Year 10

Now that you have started your GCSE course, it is important that you begin to learn the key knowledge from your lessons. The timetable below tells you which subjects you could focus on each night. It doesn't matter if you don't have that particular subject on that day, just follow the timetable for your home learning. You should spend **half an hou**r on each subject, learning the key ideas from your lesson.

TIMETABLE OF SUBJECTS

Monday: English and Geography Tuesday: Science and Art / DT / Food Wednesday: Maths and History Thursday: RE and Computer Science Friday: MFL and Music / Drama

Revising at home

There is also an expectation that you should read over your notes from your lessons to make sure that key knowledge is being embedded. Your class teachers will inform you when you have an assessment in class which will also need preparation and revision at home.

Examination boards

- It is important that you know which examination specification is used by each subject.
- The examination specification provides key information for you as students about the details of each examination paper.

How to learn knowledge from my knowledge organiser:

- Look at the work, cover it over, write it out again and check it.
- Look. Cover. Write. Check.
- Ask someone to test you and ask you questions about the topic
- Create mind maps on the topic
- Create flashcards on the topic
- Try writing out the key words or new vocabulary into new sentences
- Create a mnemonic
- Draw a diagram of the process
- Read further around the subject

English Year 10 Summer Term: An Inspector Calls

1912 (play set)	1945 (play written)	Capitalist	Aloof	Vulnerable	Q Aristocrat	Irresponsible	Naive	Conduit	
Pre WWI and WWII	The world had experienced the trauma of two world wars	Patriarch Avaricious Ignorant	Supercilious Prejudiced Aristocratic	Exploited Campaigner Outcast	Self-serving Cunning Capitalist	Remorseful Reticent Childish	Remorseful Reticent Childish	Socialist Authoritative Methodical	
Class divide and little class mixing	Wars had led to increased class mixing – evacuation/ fighting on the front lines	Ostentatious <u>Mr. Birling</u>	Covetous Mrs. Birling	<u>Eva Smith</u>	<u>Gerald Croft</u>	Socially inept <u>Eric</u>	Socially inept <mark>Sheila</mark>	Socialist Inspector	
Fewer opportunities for women – confined to domestic sphere	Wars had given women increased opportunities. Suffragette movement had led to increased opportunities for women	'hard headed practical man of business' 'Titanic	'girls of that class' 'No, of course not. He's only a boy.' 'Aldermand	'Two hours ago a young woman died in the infirmary'	'well-bred young man about town' 'we're respectable citizens not	'why shouldn't they try for higher wages?' 'She was pretty	'Oh look mummy, isn'tita beauty' 'These girls aren't cheap labour	'It's better to ask for the world than to take it' 'I don't play golf'	
Hopes for future prosperity	Wars and financial crises (such as wall street crash) had led to re-evaluation of prosperity	unsinkable' something tonight.	absolutely unsinkable' 'All mixed up like bees in a hive community and all	say, we are learning something tonight.' 'But I think she had	'Lively good- looking girl' 'jealous of her' 'She only had	criminals' 'she was young and fresh and charming'	and a good sport' 'I was in that state where a chap turns nasty'	they're people' You mustn't try to build up a kind of wall'	'burnt her insides out' ;each of you helped to kill her'
Limited opportunities for social mobility	Class mixing had led to some opportunity for social mobility			blame'	herselfto blame'	'what about this ring'	'you killed her! You killed them both'	'wonderful fairy prince'	'members of one body' 'fire and bloody
Titanic sank in 1912 – the night on which they play is set	Titanic sank – a key symbol of capitalism and the industrial revolution		sort would ever			, ,		and anguish'	
Limited support for those in need	War highlighted the need for a welfare state and centralised state support for the most vulnerable in society	Key terms: Capitalism - a per	rson who uses their	wealth to invest	Dramatic Irony –	Stage Directions	Key sy	mbols	
<text><text><text></text></text></text>	 Tet these girls area? charapteaser. Tet the control in the very done anything like that, and like year done anything like that. We have any done any done any done anything like that, and like year done anything like that were done anything like that were done anything like that anything year done anything year do	exchange should community as a v <u>Social class</u> - a div and economic stat <u>Industrial revolu</u> industry that occu 19th centuries <u>Discrimination</u> - the <u>Aristocracy</u> - the	s of production, dist be owned or regulat vhole. vision of a society ba itus <u>tion</u> - the rapid deve urred in Britain in the	ed by the sed on social lopment of late 18th and cial treatment	When the audience know something that the character(s_ don't Interruptions Various characters are interrupted to show power imbalances and build tension	Helps the actors to maintain tone as Priestley intended <u>Setting</u> Their household reflects their growing affluency and Mr. Birling's desire to progress			

Π

War Photographer – Carol RumensContent, Mening and Purpose -Fells the story of a war photographer developing photos at home in England: as a painting a contrast to the safety of his dark roomHe appears to be returning to a warzone at the end of the poemDuffy conveys both the brutality of war and the indifference of those who might view the photos in newspapers and magazines: those who live in comfort and are unaffected by warCnext -Like Tennyson and Ted Hughes, Duffy was the Poet LargeateDuffy was inspired to write this poem by her friendship with a war photographer. She was intrigued by the chalenge faced by these people whose job requires them to record terrible, horrific events without being able to directly universal: ("Belfast. Beirut. Phnom Penh.")Angrage "All flesh is grass": Biblical reference that means alf to do": like a soldier, the photographer has a sense of dug 'running children in a nightmare heat": emotive imagery with constations of hell. "blood stained into a foreign dust":	 LANGUAGE Metaphor - comparing one thing to another Simile - comparing two things with 'like' or 'as' Personification - giving human qualities to the non-human Imagery - language that makes us imagine a sight (visual), sound (aural), touch (tactile), smell or taste. Tone - the mood or feeling created in a poem. Pathetic Fallacy - giving emotion to weather in order to create a mood within a text. Irony - language that says one thing but implies the opposite eg. sarcasm. Colloquial Language - informal language, usually creates a conversational tone or authentic voice. Onomatopoeia - language that sounds like its meaning. Alliteration - words that are close together start with the same letter or sound. Sibilance - the repetition of s or sh sounds. 			
lasting impact of war – links to Remains and 'blood shadow'. "he earns a living and they do not care": 'they' is ambiguous – it could refer to readers or the wider world. Inight mare war zonesThird stanza: A specific image – and a memory – appears before him.	 Sibilatice – the repetition of sin sounds. Assonance – the repetition of similar vowel sounds Consonance – repetition of consonant sounds. Plosives – short burst of sound: t, k, p, d, g, or b sound. 			
Poppies Jane Weir Content, Meaning and Purpose -A modern poem that offers an alternative interpretation of bravery in conflict: it does not focus on a soldier in battle but on the mother who is left behind and must cope with his deathThe narration covers her visit to a war memorial, interspersed with images of the soldier's childhood and his departure for war Interpretation of bravery in conflict. It does not for critical tone; about how soldiers can become intoxicated by the glamour or the military: "a blockade of yellow bias" and "intoxica ted". Interpretation of provide the fields of home/childhood ("cat hairs", "play at being Eskimos", "bedroom") with war/injury ("blockade", bandaged", "reinforcements") -Aural (sound) imagery: "All mywords flattened, rolled, turned into feit" shows pain and inability to speak, and "listened, hoping to hear your playground voice catching on the wind" shows longing for dead son"Iwas brave, as I walked with you, to the front door": different perspective of bravery in conflict.	STRUCTUREStanza – a group of lines in a poem.Repetition – repeated words or phrasesEnjambment – a sentence or phrase that runs ontothenext line.Caesura – using punctuation to create pauses orstops.Contrast – opposite concepts/feelings in a poem.Juxtaposition – contrasting things placed side by side.Oxymoron – a phrase that contradicts itself.Anaphora – when the first word of a stanza is thesame across different stanzas.Epistrophe – when the final word of a stanza is thesame across different stanzas.Volta – a turning point in a poem.	FORM Speaker – the narrator, or person in the poem. Free verse – poetry that doesn't rhyme. Blank verse – poem in iambic pentameter, but with no rhyme. Sonnet – poem of 14 lines with clear rhyme scheme. Rhyming couplet – a pair of rhyming lines next to each other. Meter – arrangement of stressed/unstressed syllables. Monologue – one person speaking for a long time.		
Conflict Suffering Loss Regret Regret	Bravery Datriotism	Reality of War		

X

Year 10 Summer Term 1: Power and Conflict Poetry – The Effects of War

Charge of the Light Brigade – Alfred, Lord Tennyson

<u>Content, Meaning and Purpose</u> - Published six weeks after a disastrous battle against the Russians in the (unpopular) Crimean War -Describes a cavalry charge against Russians who shoot at the lightly-armed British with cannon from three sides of a long valley. -Of the 600 hundred who started the charge, over half were killed, injured or taken prisoner. -It is a celebration of the men's courage and devotion to their country, symbols of the might of the British Empire.

Language - "Into the valley of Death": this Biblical imagery portrays war as a supremely powerful, or even spiritual, experience. - "jaws of Death" and "mouth of Hell": presents war as an animal that consumes its victims. - "Honour the Light Briga de/Noble six hundred": language glorifies the soldiers, even in death. The 'six hundred' become a celebrated and prestigious group. - "shot and shell": sibilance creates whooshing sounds of battle. <u>Context</u> -As Poet Laureate, he had a responsibility to inspire the nation and portray the war in a positive light: propaganda. -Although Tennyson glorifies the soldiers who took part, he also draws attention to the fact that a commander had made a mistake: "Someone had blunder'd". -This was a controversial point to make in Victorian times when blind devotion to power was expected.

Form and Structure-This is a ballad, a form of poetry to remember historical events – we should remember their courage. -6 verses, each representing 100 men who took part. -First stanza tightly structured, mirroring the cavalry formation. Structure becomes awkward to reflect the chaos of battle and the fewer men returning alive.-Dactylic dimeter (HALF-a leaugue / DUM-de-de) mirrors the sound of horses galloping and increases the poem's pace. -Repetition of 'the six hundred' at the end of each stanza (epistrophe) emphasises huge loss.

Exposure – Wilfred Owen

<u>Content, Meaning and Purpose</u>-Speaker describes war as a battle against the weather and conditions. -Imagery of cold and warm reflect the delusional mind of a man dying from hypothermia. -Owen wanted to draw attention to the suffering, monotony and futility of war

Language - "Our brains ache" physical (cold) suffering and mental (PTSD or shell shock) suffering. -Semantic field of weather: weather is the enemy. - "the merciless iced east winds that knive us..." – personification (cruel and murderous wind); sibilance (cutting/slicing sound of wind); ellipsis (neverending). -Repetition of pronouns 'we' and 'our' – conveys togetherness and collective suffering of soldiers. - 'mad gusts tugging on the wire' – personification <u>Context</u> -Written in 1917 before Owen went on to win the Military Cross for bravery, and was then killed in battle in 1918: the poem has authenticity as it is written by an actual soldier. -Of his work, Owen said: "My theme is war and the pity of war". -Despite highlighting the tragedy of war and mistakes of senior commanders, he had a deep sense of duty: "not loath, we lie out here" shows that he was not bitter about his suffering

Form and Structure -Contrast of Cold>Warm>Cold imagery coveys Suffering>Delusions>Death of the hypothermic soldier. -Repetition of "but nothing happens" creates circular structure implying never ending suffering -Rhyme scheme ABBA and hexameter gives the poem structure and emphasises the monotony. -Pararhymes (half rhymes) ("nervous / knife us") only barely hold the poem together, like the men.

Bayonet Charge – Ted Hughes

<u>Content, Meaning and Purpose</u>-Describes the terrifying experience of 'going over the top': fixing bayonets (long knives) to the end of rifles and leaving a trench to charge directly at the enemy. -Steps inside the body and mind of the speaker to show how this act transforms a soldier from a living thinking person into a dangerous weapon of war. -Hughes dramatises the struggle between a man's thoughts and actions.

Language "The patriotic tear that brimmed in his eye Sweating like molten iron": his sense of duty (tear) has now turned into the hot sweat of fear and pain. "cold clockwork of the stars and nations": the soldiers are part of a cold and uncaring machine of war. "his foot hung like statuary in midstride.": he is frozen with fear/bewilderment. The caesura (full stop) jolts him back to reality. "a yellow hare that rolled like a flame And crawled in a threshing circle": impact of war on nature – the hare is distressed, just like the soldiers Context -Published in 1957, but most-likely set in World War 1. -Hughes' father had survived the battle of Gallipoli in World War 1, and so he may have wished to draw attention to the hardships of trench warfare. -He draws a contrast between the idealism of patriotism and the reality of fighting and killing. ("King, honour, human dignity, etcetera")

Form and Structure -The poem starts 'in medias res': in the middle of the action, to convey shock and pace. -Enjambment maintains the momentum of the charge. -Time stands still in the second stanza to convey the soldier's bewilderment and reflective thoughts. -Contrasts the visual and aural imagery of battle with the internal thoughts of the soldier = adds to the confusion.

Bayonet Charge – Ted Hughes

<u>Content, Meaning and Purpose</u> -Describes the terrifying experience of 'going over the top': fixing bayonets (long knives) to the end of rifles and leaving a trench to charge directly at the enemy. -Steps inside the body and mind of the speaker to show how this act transforms a soldier from a living thinking person into a dangerous weapon of war. -Hughes dramatises the struggle between a man's thoughts and actions.

Language "The patriotic tear that brimmed in his eye Sweating like molten iron": his sense of duty (tear) has now turned into the hot sweat of fear and pain. "cold clockwork of the stars and nations": the soldiers are part of a cold and uncaring machine of war. "his foot hung like statuary in midstride.": he is frozen with fear/bewilderment. The caesura (full stop) jolts him back to reality. "a yellow hare that rolled like a flame And crawled in a threshing circle": impact of war on nature – the hare is distressed, just like the soldiers Context -Published in 1957, but most-likely set in World War 1. -Hughes' father had survived the battle of Gallipoli in World War 1, and so he may have wished to draw attention to the hardships of trench warfare. -He draws a contrast between the idealism of patriotism and the reality of fighting and killing. ("King, honour, human dignity, etcetera")

Form and Structure-The poem starts 'in medias res': in the middle of the action, to convey shock and pace. -Enjambment maintains the momentum of the charge. -Time stands still in the second stanza to convey the soldier's bewilderment and reflective thoughts. -Contrasts the visual and aural imagery of battle with the internal thoughts of the soldier = adds to the confusion.

Conflict

Suffering

Loss

9

Regret

Bravery

Maths Year 10 Higher Summer FOUR RULES OF CONGRUENCE

Maths Year 10 Higher Summer SIMILARITY - LENGTHS

Maths Year 10 Higher Summer ST TERESA of CALCUTTA atholic Academy Trust **TRIGONOMETRIC GRAPHS AND EXACT VALUES Examples Key Concepts** For some angles in a right angled triangle, there is an exact trigonometric value. These are shown Trigonometric graphs y = sinx° in the table below. Cosine Tangent Sine -90° 90° 270° 360° 450° 540° **0**° 0 1 0 $\frac{1}{\sqrt{3}}$ $\frac{1}{2}$ 30° $\frac{\sqrt{3}}{2}$ y = tanx° 180° 270° 360° 450° 1 1 45° 1 $\frac{-}{\sqrt{2}}$ y = cosx° $\overline{\sqrt{2}}$ $\frac{1}{2}$ $\sqrt{3}$ -90° 0 360° 540° $\frac{\sqrt{3}}{2}$ 270° 60° 180°

ST TERESA Maths Year 10 Higher Summer of CALCUTTA Catholic Academy Trust **TRANSFORMATIONS OF TRIGONOMETRIC GRAPHS Examples Key Concepts** All graphs can be transformed $y = -\sin(x)$ by applying different rules to their original function y = f(x) $y = \sin(x) + 1$ y = -f(x) This will reflect a function in the *x* axis. y = f(-x) This will reflect a $y = \sin(x)$ $y = \sin(x)$ function in the y axis. $y = \sin(-x)$ $y = f(x) \pm a$ This will translate $y = \sin(x + 90)$ a function parallel to the y axis by $\begin{pmatrix} 0 \\ \pm a \end{pmatrix}$. $y = f(x \pm a)$ This will translate a function parallel to the *x* axis by $\begin{pmatrix} \mp a \\ 0 \end{pmatrix}$. $y = \sin(x)$ $y = \sin(x)$ **Key Words** 1) Transform the graph of y = cos(x) by: Sine a) $y = \cos(x) - 1$ MATHSWATCH b) Cosine $y = -\cos(x)$ 2) Transform the graph of $y = \tan(x)$ by: 196b Tangent a) $y = \tan(x + 90)$ b) v =Function tan(-x)Transform Translate b) Reflect in the y axis Reflect 00 yd ffel (x)nb efelener (62 sixe x edf in foet in the field of the field of the foet of the foet

Maths Year 10 Higher Summer 3D TRIGONOMETRY

Maths Year 10 Foundation Summer 1 PLANS AND ELEVATIONS

51

Maths Year 10 Foundation Summer CONSTRUCTIONS

SA3W2NA

Maths Year 10 Foundation Summer 1 **CONSTRUCTIONS AND LOCI**

ST TERESA

of CALCUTTA Catholic Academy Trust

146

ST TERESA of CALCUTTA Catholic Academy Trust Maths Year 10 Foundation Summer EXPAND AND SIMPLIFY BRACKETS, FACTORISING **Key Concepts Examples Quadratic expressions** Expand and simplify: Factorise: **Expanding brackets** Linear expressions Single: Where each term inside the bracket is multiplied by the term 3) $x^2 - 2x - 3$ Expand and simplify where appropriate on the outside of the bracket. 1) (p+2)(2p-1)= (x-3)(x+1)7(3+a) = 21 + 7aDouble: Where each term in the 1) first bracket is multiplied by all $= 2p^2 + 4p - p - 2$ terms in the second bracket. 2(5+a) + 3(2+a) = 10 + 2a + 6 + 62) $= 2p^2 + 3p - 2$ Factorise and solve: 3a **Factorising expressions** Putting an expression back into 4) $x^2 + 4x - 5 = 0$ brackets. To "factorise fully" means $(p + 2)^2$ 2) 5a + 16(x-1)(x+5) = 0take out the HCF. Therefore the solutions are: (p + 2) (p + 2)3) Factorise 9x + 18 = 9(x + 2)**Difference of two squares** Either x - 1 = 0When two brackets are repeated x = 1with the exception of a sign $= p^2 + 2p + 2p + 4$ 4) Factorise $6e^2 - 3e = 3e(2e - 1)$ Or x + 5 = 0change. All numbers in the original $= p^2 + 4p + 4$ expression will be square numbers. x = -5**1) Expand and simplify** (a) 3(2 - 7f)(b) 5(m-2) + 6(c) Key Words MATHSWATCH 3(4 + t) + 2(5 + t)Expand 97, 157 **2) Factorise** (a) 6m + 12t (b) 9t – 3p (c) $4d^2 - 2d$ Factorise Simplify **3) Expand** (5g - 4)(2g + 1)Product 4) (a) Factorise $x^2 - 8x + 15 = 0$ 4 - 3E - 301 (E Solve 3(3t - b) (c) 5q(5q - 7)(d) (12 + m) = (6)(p) 2m - 4 (c) 22 + 5f ANSWERS: 1) (a) 6 – 21f

Biology Summer Term Year 10

+

B4:	Evolution	••The Leakeys	Mary and Louis discovered Homo habilis, their son	**Human evolution	Humans did not evolve from chimpanzees, we both	**Bacteria	Single-celled organisms with no nucleus and no unused sections
Lesso	n sequence		Richard worked on Homo		evolved from a common		DNA.
20. Human evo	lution		erectus.		ancestor.	**Archae	Single-celled organisms with no
21. The theory	of evolution	The human lineage Momo an	40 cm		3. Resistance		nucleus but with unused sectio
22. Resistance		Home habits	Harris superior		The natural ability of some	••Eukarya	of DNA. (Often) multi-cellular organism
23. Classificatio	n	A			members of a species to survive	Cukarya	with a nucleus and unused
24. How to mod					poisons that would kill the other		sections of DNA. Includes plant
	ith modifying species				members.		animals, fungi and protists.
					Evolution of organisms that stops	-	
-	gineering of bacteria				them from being affected by		
(HT)		© 2007 Decyclopedia Britannice, Inc.		resistance ••Rats and	poisons. Warfarin is used to kill rats. Some		5. How to modify species
1. Hur	nan evolution		theory of evolution		rats were naturally resistant,	 Artificial selection 	When humans (normally farmer select the animals/plants to bre
	Two-part names, first part =	*Charles Darwin	Develop the theory of evolution.		survived the warfarin, bred and	selection	with the best characteristics.
	genus, second part =	*Evolution	The way that species develop		passed on their resistance genes.	 Selective 	Developing new breeds of plant
	species. Written in italics.	LVOIDLIOIT	by gradual changes over many	**Antibiotic	Antibiotics are used to kill bacteria.	breeding	animals with better characterist
	Our species. Evolved about		generations due to natural		Some bacteria were naturally		by selective breeding over many
	200,000 years ago. Skull		selection.		resistant, survived the antibiotics,		generations.
	volume 1450 cm ^{3.}	 Variation 	Natural differences between		bred and passed on their		Choose parents with the best
	Aka 'Ardi'. 4.4 million years		members of a species that		resistance genes.		characteristics, breed them
I	ago, walked upright and climbed trees, 350 cm ³ skull		affect the chance of survival.		Antibiotic resistance means that many infections that used to be	practice	together, choose from their
I	volume.		Changes in DNA cause		simple to treat may become too		offspring with the best
	Aka Lucy. 3.2 million years	evolution	variation.		resistant to treat, causing major		characteristics, breed them together, repeat for many
	ago, walked upright, skull	**Environmental	Change to factors such as		health problems.		generations.
-	volume 400 cm ³ .	change	food supply, climate or predators.			*Genetic	Changing the characteristics of
**Homo habilis	2.4-1.4 million years ago,	 Competition 	The fight to eat, survive and	+C1	4. Classification		organisms by giving them genes
	walked upright, skull	competition	breed.	*Carl Linnaeus	Developed the modern system of classification.		from another organism.
	volume 5-600 cm ³ .	*Natural	Organisms with the best	*How to	Based on similarities, group things	*GMO	Genetically modified organism:
*8Homo erectus	1.8 to 0.5 million years ago,	selection	genes and characteristics are	classify	into smaller and smaller groups		organism that has had its genes
	walked upright, skull volume 850 cm ³ .		more likely to survive, breed	,	with fewer and fewer similarities.		changed.
•Fossil evidence	Many fossils have been		and pass on their better	*Problems	Sometimes organisms that look	**Bt corn	Corn containing a gene from
rossil evidence	found showing a gradual		genes.	with	similar are not actually related.		Bacillus thuringiensis that make
	transition from 'ape-like' to	 Inheritance 	Gaining your genes from your	classification			produce a substance called <u>Bt</u> which kills insects.
	'human-like'.		parents.	 Kingdoms 	Old idea, classifying living things	 Medical 	GM bacteria are used to make
••Stone tool	Older stone tools are	**Well adapted	An organism has features that make it better able to survive		into five kingdoms (including	GMOs	insulin (for diabetes) and some
evidence	simpler requiring less		and breed.		plants, animals and fungi)		antibiotics.
	intelligence to make,	**Evolution and	An individual does not evolve	**Carl	Developed the modern system of	**Pros and	Quicker than selective breeding
	younger stone tools are		during its lifetime,	•Domains	classification with three domains. Modern idea of classifying living		
I				1 Domains	Liviogern idea of classifying living	1	
	more complex requiring more intelligence to make.		populations of organisms	Domania	things into three main groups:		characteristics but is expensive.

Biology Summer Term Year 10

6. Pr	oblems with modifying species
Over- selection	Farmers focussing too much on breeding for one characteristic (such as chicken breast size), don't spot problems with other characteristics (such as weak leg bones) causing suffering.
Gene leakage	The concern GMOs could breed with wild relatives, enabling the modified genes to escape into the wild. This could have ecological impacts.
Resistance	The concern that in areas growing Bt corn, insects simply evolve resistance to Bt.
Insulin	Insulin made by GM bacteria is not identical to human insulin, and some people suffer bad reactions to it.

7. Genetic engineering of bacteria (HT)						
**Plasmid DNA	Small loops of DNA containing a few genes.					
•••Restriction enzyme	Enzymes that cut DNA, leaving sticky ends at each end of the piece of DNA.					
•••Sticky end	A short sequence of unpaired bases at the end of a piece of DNA.					
•••Ligase	An enzyme that joins two pieces of DNA by matching up the bases on their sticky ends.					
***Recombinant DNA	DNA produced by combining together two of more pieces of DNA.					
•••How to genetically engineer bacteria	Cut out gene using restriction enzymes, remove plasmids from bacteria and open with restriction enzymes, use ligase to join gene and plasmid together, return plasmids to					
	bacteria.					

Biology Summer Term Year 10

-1

The Leakeys

+		
	l selection and genetic modification	Cha Dan
	son sequence	Evol
27. Human e	•	
	ry of evolution	
29. Resistance	,	
30. Classifica	_	Vari
31. Modifyin	-	Mut
32. Problems	with modifying life	
1.1	luman evolution	Envi
Binomial	Two-part names, first part =	chai
naming	genus, second part = species, written in italics.	Con
Homo sapiens	Our species. Evolved about	Nat
	200,000 years ago. Skull	sele
	volume 1450 cm ³ .	
Ardipithecus	Aka 'Ardi'. 4.4 million years	
ramidus	ago, walked upright and	Inhe
	climbed trees, 350 cm ³ skull	
	volume.	Wel
	Aka Lucy. 3.2 million years	
afarensis	ago, walked upright, skull volume 400 cm ³ .	Evol
Homo habilis	2.4-1.4 million years ago,	the
nomo nabilis	walked upright, skull volume	
	5-600 cm ³ .	
Homo erectus	1.8 to 0.5 million years ago,	Hun
	walked upright, skull volume	evo
	850 cm ³ .	
Fossil evidence	Many fossils have been found	
	showing a gradual transition	Resi
	from 'ape-like' to 'human-	
Stone tool	like'. Older stone tools are simpler	
evidence	requiring less intelligence to	Evo
Charlie	make, younger stone tools are	of .
	more complex requiring more	resi
	intelligence to make.	Rats
T 1 1 1	Manual Lauria dia amang 1	war

Mary and Louis discovered

Richard worked on Homo

Homo habilis, their son

erectus.

2. The theory of evolution					
Charles		Develop the theory of evolution.			
Darwin					
Evolution		The way that species develop by			
		gradual changes over many			
		generations due to natural			
		selection.			
Variation		Natural differences between			
		members of a species that affect			
		the chance of survival.			
Mutations		Changes in DNA that cause			
		variation.			
Environme	ntal	Change to factors such as food			
change		supply, climate or predators.			
Competitio	n	The fight to eat, survive and			
		breed.			
Natural		Organisms with the best genes			
selection		and characteristics are more			
		likely to survive, breed and pass			
		on their better genes.			
Inheritance	•	Gaining your genes from your			
		parents.			
Well adapt	ed	An organism has features that			
		make it better able to survive			
		and breed.			
Evolution a		An individual does not evolve			
the individ	ual	during its lifetime, populations			
		of organisms evolve over many			
		lifetimes.			
Human		Humans did not evolve from			
evolution		chimpanzees, we both evolved			
		from a common ancestor.			
		3. Resistance			
Pacistance	The	a natural ability of some members			
Resistance		a species to survive poisons that			
		uld kill the other members.			
Evolution					
of		olution of organisms that stops m from being affected by			
resistance		sons.			
	P				
Rats and warfarin		rfarin is used to kill rats. Some			
warrarin resistance		s were naturally resistant,			
resistance		vived the warfarin, bred and			
	pas	sed on their resistance genes.			

Antibiotic	А	ntibiotics are used to kill bacteria.	Selective
resistance	S	ome bacteria were naturally	breeding i
	rε	esistant, survived the antibiotics,	practice
	ь	red and passed on their resistance	
	g	enes.	
The	A	ntibiotic resistance means that	
problems	m	any infections that used to be	
of	si	mple to treat may become too	Genetic
resistance		esistant to treat, causing major	engineerir
	h	ealth problems.	I
		4. Classification	GMO
Carl		Developed the modern system of	
Linnaeus		classification.	Bt corn
How to		Based on similarities, group things	Br com
classify		into smaller and smaller groups	
-		with fewer and fewer similarities.	
Linnaeus'		Kingdom \rightarrow phylum \rightarrow class \rightarrow	Medical
classificatio	on	order \rightarrow family \rightarrow genus \rightarrow	GMOs
system		species	GIVIOS
Problems		Sometimes organisms that look	Pros and
with		similar are not actually related.	cons of GN
classificatio	on	-	cons or di
Carl Woese		Developed the modern system of	
		classification with three domains.	6.
Domains		The three main groups of life:	Over-
		bacteria, Archae, Eukarya.	selection
Bacteria		Single-celled organisms with no	
		nucleus and no unused sections of	
		DNA.	
Archae		Single-celled organisms with no	
		nucleus but with unused sections	Gene
		of DNA.	leakage
Eukarya		Often multi-cellular organisms	
		with a nucleus and unused	
		sections of DNA. Includes plants,	Resistance
		animals, fungi and protists.	1
		5. Modifying Life	Insulin
Artificial	1	When humans (normally farmers)	Insum
selection	1	select the animals/plants to breed	
	1	with the best characteristics.	
Selective	Ī	Developing new breeds of plants or	
breeding	ā	animals with better characteristics	
_	ł	by selective breeding over many	
	ŝ	generations.	
			•

Selective	Choose parents with the best			
breeding i	n characteristics, breed them			
practice	together, choose from their			
	offspring with the best			
	characteristics, breed them			
	together, repeat for many			
	generations.			
Genetic	Changing the characteristics of			
engineerin	g organisms by giving them genes			
	from another organism.			
GMO	Genetically modified organism: an			
	organism that has had its genes			
	changed.			
<u>Bt</u> corn	Corn containing a gene from			
	Bacillus thuringiensis that makes it			
	produce a substance called Bt			
	which kills insects.			
Medical	GM bacteria are used to make			
GMOs	insulin (for diabetes) and some			
	antibiotics.			
Pros and	Quicker than selective breeding			
cons of GN	and can introduce more different			
	characteristics, but is expensive.			
	Dankland with madifier life			
Over-	Problems with modifying life Farmers focussing too much on			
selection	breeding for one characteristic (such			
selection	as chicken breast size), don't spot			
	problems with other characteristics			
	(such as weak leg bones) causing			
	suffering.			
Gene	The concern GMOs could breed with			
leakage	wild relatives, enabling the modified			
ICOKOge	genes to escape into the wild. This			
	-			
Resistance	could have ecological impacts. The concern that in areas growing Bt			
nesistance	corn, insects simply evolve			
	resistance to Bt.			
Insulin				
insuin	Insulin made by GM bacteria is not			
	identical to human insulin, and some			
	people suffer bad reactions to it.			

Chemistry Summer Term Year 10

C9:	Quantitative chemistry		Calculate M _r for the empirical	**Conservation of mass in an	
Lesson sequence 31. Formula masses 32. Calculating empirical formulae 33. Conservation of mass		formula - from an fo empirical -	Divide the M _r of the molecular ormula by this number Multiply the empirical formula y your answer	open system	1
35. Mole	lating reacting masses s (HT) hiometry of reactions (HT)		nula example ontains 14.3% hydrogen by mass on. Determine its empirical	4. Ca ***Excess reactant	Ai Ai Up be
*Molecular formula *Empirical formula	1. Formula masses Gives the number of atoms of each element present in a molecule. Gives the number of atoms of each element present in a compound as		C H 85.7% 14.3% .7÷12=7.14 14.3÷1=14.3 '.14÷7.14=1 14.3÷7.14=2 CH2	•••Limiting reactant	ne Ar co Th ho
	the simplest whole number ratio. Divide the number of each atom by the highest common factor of all of the atoms.	••The relative f 28, determine in Mr of empirical	**Calculating reacting masses	ec - \ yc m	
$\begin{array}{ll} \bullet \textbf{Molecular} & C_2H_4 \rightarrow CH_2 \text{ (divided by 2)} \\ \textbf{to empirical} & C_6H_{12}O_6 \rightarrow CH_2O \text{ (divided by 6)} \\ \textbf{formula} & H_2O \rightarrow H_2Q \text{ (divided by 1)} \end{array}$		÷ molecular M _r Multiply empir		sy - (m - (
examples *Relative atomic mass, <u>A</u>	The mass of an atom relative to $1/12^{ m th}$ the mass of carbon-12. No units.		Conservation of mass The total mass of products must equal the total mass of reactants.		m vi - F tv
**Relative formula mass, M _r	The mass of one unit of a formula, found by adding the relative atomic masses of all of the atoms	 Precipitation reaction 	A reaction that produces a solid precipitate by mixing two solutions.	**Reacting m	ass
	in it. Iculating empirical formulae	*Closed system	A system in which no chemicals can enter or leave, such as a sealed test tube.	What mass of iron oxide (Fe	
empirical formulae	 Write each element's symbol with a ratio (:) symbol between Write out the amount of each 	*Open system		2Fe ₂	
from experimenta data	element from the questions I - Divide each amount by the As of the element - Divide each answer by the	**Conservation of mass in a closed system	No atoms are able to enter or leave, so the total mass stays the same – for example a	32 50	0+ _x 2
	- Divide each answer by the smallest answer to get a ratio - Write the empirical formula		precipitation reaction in a closed flask.	32	_

nservatio	n For examp	ile, a carbonate		5. Moles (HT)
ss in an	reacting w	ith acid producing	***Moles	The unit of measurement of
system	CO ₂ bubble	es: the mass appears		chemicals – one mole of any
	to decreas	e because you can't		chemical is the same amount.
	weigh the	gas that goes into	***One mole	An amount of a chemical such
	the air, ho	wever it is still there.		that one mole has a mass in
4 Cal	culating read	cting masses		grams that is the same as its
cess		t which is not used		relative formula mass.
ant		ely in a reaction		6.02 x 10 ²³ : the number of
		re is more of it than	constant	atoms/molecules present in one
	needed.			mole of a substance.
miting		t of which is		Quantity in moles = mass /
ant		used up in a reaction.	moles from	relative formula mass
		reactant determines	mass	
	-	product is made.		Quantity in moles = number of
culating		the balanced	moles from a	particles / 6.02 x 10 ²³
ng	equation		number of	
es		mass of the chemical	particles	
		n, and 'm' for the		Number of particles = (mass /
		e finding under their		relative formula mass) x 6.02 x
	symbols	5		1023
	- Draw a line	e underneath the	a mass of	
	masses to m	nake it a division	substance	
	- Calculate t	he M _r of each,	6.	Stoichiometry (HT)
	multiply by	the big numbers and	***Stoichiome	try The ratio of the number of
	write under	the line.		moles of each substance
	- Put an <u>equ</u>	als sign between the		involved in a reaction.
		an equation.	***Stoichiome	tric The 'big' numbers written in
	- Solve for 'r	n′	coefficient	a balanced equation.
octing ma	sses exampl		+++Deducing	- Calculate the number of
		roduced from 50 g of	stoichiometry	moles present of each of the
xide (Fe ₂		roduced from 50 g of		reactants (or products)
Alde (Te2	03):			- Find the simplest whole-
2Ee-C	0++3C →	4Fe + 3CO2		number ratio
21 020	3.50 /	41 C · 5002		 Balance in the normal way
50	-	m		to find the numbers of
320		<u>m</u> = 224+		products (or reactants)
320		m		
35 g	g =	m		

*2 Fe₂O₃: 2 x (2 x 56 + 3 x 16) = 320

•4 Fe: 4 x 56 = 224

Chemistry Summer Term Year 10

C10-12	: Electrolysis, metals and	+++Half-	An equation that shows what
	eversible reactions	equations	happens to just one of the ions
			during chemical reaction. Two
	Lesson sequence		half-equations combine to give the
37. Electro	-		overall ionic equation
	quations (HT)	+++Half-	Show electron transfer:
			Cathode (reduction):
	cts of electrolysis	electrolysis	$M^+ + e^- \rightarrow M$
	oractical – electrolysis of		Anode (oxidation): $X^{-} \rightarrow X + e^{-}$
coppe	r sulfate solution (CP10)	***Electronc	Cations will gain the same number
41. Reacti	vity	in half	of electrons as their charge.
42. Displa	cement reactions	equations	Anions will lose the same number
43. Extrac	ting metals from their ores	equations	of electrons as their charge.
	tion and reduction	+++Non-	Most non-metals will form
	cle assessment and	metals in	molecules: O ₂ , F ₂ , Cl ₂ , Br ₂ , l ₂ etc –
		half-	so you will need two of them in
recycl	0	equations	the half-equation.
	nic equilibrium	2	Products of electrolysis
47. Chang	es to equilibrium systems	Discharged	When an ion loses its charge to
(HT)		Dischargea	become an atom
	1 Flastachusia	*Electrolysis	
*Electrolysis	1. Electrolysis Using direct current to break	of molten	Anode: non-metal
Liectrolysis	compounds down into their	salts	
	elements.	**lons in salt	Metal, non-metal and H ⁺ and OH ⁻
 Electrolyte 	Liquid used for electrolysis	solutions	because water partially ionises.
2.200.0.,02	because ions can move – either		2H+(g) + 2e- → H ₂ (g)
	molten or dissolved ionic	half-equation	
	compounds		Metal, unless reactive metal such
**Electrolysis	Does not work as ions can't	of salt	as K, Na, Li, Mg, Ca in which case
of solids	move.	solutions -	hydrogen.
 Electrodes 	Conducting rods placed in	cathode	New sector land and the base sector is
	electrolyte, connected to power	of salt	Non-metal, unless sulphate salt in which case oxygen.
	supply.	solutions -	which case oxygen.
 Cathode 	Negative electrode where cations	anode	
	(+) are discharged.		Cathode: hydrogen
 Anode 	Positive electrode where anions (-	of sulfuric	Anode: oxygen
) are discharged.	acid	
2. Half-equations (HT)		**Purifying	Anode: impure copper
Oxidation	Loss of electrons (OIL)	copper -	Cathode: pure copper
(HT)		setup	Electrolyte: copper sulphate
Reduction (HT)	Gain of electrons (RIG)	L	solution
AnQx	Anode is for oxidation		
CaRe	Cathode is for reduction		

(Cu → Cu²⁺ + 2e⁻), travel through copper explanation solution and go to cathode (Cu2+ +2e⁻ → Cu). Impure atoms on the anode fall to the bottom as sludge. Electrolysis of molten lead bromide Cathode (-ve) Anode (+ve) Ph2+

Copper atoms leave the anode

••••Purifying

+CP10 -The anode loses mass whilst the Results cathode gains mass. The higher the current the greater the mass change.

http://www.	gosescience.com		5. Reactivity
4. Core prac	tical – electrolysis of copper <u>sulfate</u> solution (CP10)	*Reactivity series (most to least)	Potassium, sodium, calcium, magnesium, aluminium, zinc, iron, connor, cikur, gold
•CP10 - aim	To see how the changing the current affects the rate of electrolysis.	**Forming cations	iron, copper, silver, gold. The more reactive metals more easily lose electrons to form cations.
*CP10 – Prepare electrodes *CP10 -	Clean two copper electrodes, label one anode and one cathode, weigh each and record mass. Connect a variable resistor to the	**Reaction with cold water (H ₂ O(I))	Metal + water → metal hydroxide + hydrogen - Potassium – violently
Setup	negative terminal of a power supply then connect this to the cathode. Connect an ammeter to the positive terminal then connect this to the anode. Place both electrodes in a	**Reaction only with steam	- Sodium – very quickly - Calcium – slowly Metal + water → metal oxide + hydrogen Magnesium, zinc, iron
•CP10 – Run the experiment	beaker of copper sulfate solution Switch the power supply on, adjust the variable resistor so the ammeter reads 0.2 A and leave for 20 minutes.	(H₂O(g)) **No reaction with water or steam	Copper, silver, gold
•CP10 – Record results	Carefully remove each electrode, rinse them with water and then with propanone. Re-weigh each and record.	**Reaction with acid	Metal + acid → salt + hydrogen - Sodium, potassium – violent
•CP10 – Variations	Repeat the experiment with a current of 0.3 A, 0.4 A and 0.5 A.		 Calcium, magnesium, zinc, iron – steady Copper, silver, gold – no reaction

Chemistry Summer Term Year 10

Extracting

6. Dis	placement reactions	
**Displacement	Reactions in which a more	
reactions	reactive metal displaces a less	
	reactive metal from a salt eg:	
	copper sulfate + zinc \rightarrow zinc.	
	sulfate + copper	
	Does not work backwards as	
	copper is less reactive than	
	zinc.	
***Redox	Reactions in which an oxidation	
reactions	and reduction happen at the	
	same time, such as	
	displacement reactions.	
***Redox	The more reactive metal gets	
during	oxidised, eg:	
displacement	 Zn → Zn²⁺ + 2e⁻ 	
	The less reactive metal gets	
	reduced, eg:	
	Cu ²⁺ + 2e ⁻ → Cu	
***Spectator	An ion that does not change	
ion	during a chemical reaction.	
7 Extract	ng motols from their eres	
*Native state	when metals are found	
- Native State	naturally in their pure form,	
	such as silver and gold.	
*Ore		
- Ore	Rock containing enough of a metal compound to extract	
	-	
	for profit. Normally oxides or	
	sulphides of the metal.	

metals by hea with carbon **Extracting	ating	metals such as zinc, iron, copper. Works because
**Extracting		
		1 · · · · · · · · · · · · · · · · · · ·
		carbon is more reactive, eg:
		iron oxide + carbon →
		carbon dioxide + iron
		Done with metals more
metals by		reactive than carbon such as
electrolysis		
electrolysis		potassium, sodium, calcium,
		magnesium, aluminium, eg:
		Aluminium oxide →
		aluminium + oxygen
*Bioextractio	D.	Using living organisms to
		extract metals.
++Bioleaching	g	Growing bacteria on poor
		quality copper ore. The
		bacteria produce a solution
		of copper sulfate from which
		copper can be extracted by
		electrolysis.
**Phytoextraction		Plants are grown that absorb
		metal compounds as they
		grow. The plants are then
		burnt to produce ash that is
		rich in metal compounds.
		-
		tion and reduction
 Oxidation 	Gaini	ng oxygen
 Reduction 	Losing	g oxygen
 Redox 	Wher	reduction and oxidation
	reacti	ons happen together.
**Reduction	Iron p	produced from iron oxide by
of iron	heatir	ng with carbon:
	iro	n oxide + carbon → carbon
		dioxide + iron
	Iron is	s reduced, carbon is oxidised.
**Reduction	Alumi	inium is produced from
of	aluminium oxide by electrolysis:	
aluminium	Aluminium oxide \rightarrow aluminium +	
ore	oxygen	
	Aluminium is reduced, oxygen is	
	oxidised	
 Corrosion 	When metals slowly react with	
Corrosion	-	
**Rates of	oxygen, making them weaker.	
corrosion	More reactive metals corrode more quickly.	
corrosion	more	quickiy.

ammonia

exothermic

For extracting less reactive

++Tarnish		protective layer of oxide that	++Haber	For making ammonia in factories:
		ops the layers below from	process	- 200 atm pressure – equilibrium
	CO	rroding.		shifts right, yield increases
9. Life-cycle assessment and recycling				 450°C – equilibrium shifts left,
•Recycling	cycli	Converting old waste metal		lower yield but MUCH faster
Netyting		into new metal that can be		reaction
		reused		 Catalyst – increases reaction
Advantage	e of	- Natural reserves last longer		rate
recycling	5 01	- Less pollution from mining	11 Change	es to equilibrium systems (HT)
ceyening		- Less pollution from processing	***Effect on	Exothermic reaction –
		- Less waste in landfill	equilibrium of	
		- Often less energy used	increasing	decreases
•Disadvanta	ares	- Can be expensive	temperature	Endothermic reaction –
of recycling		- Can use a lot of energy in	Cimperature	equilibrium shifts right, yield
orrecyching		transporting, collecting and		increases
		sorting	***Effect on	Exothermic reaction –
**Life-cycle		Looks at environmental impact	equilibrium of	
assessment		of all stages of a product's	decreasing	increases
(LCA)		lifecycle. We should aim to	temperature	Endothermic reaction –
(con)		reduce all damage.	comperature	equilibrium shifts left, yield
••LCA stage	-5	- Obtaining and processing raw		decreases
con stage	~	materials	***Effect on	Equilibrium shifts to side with
		- Making and packaging the	equilibrium of	
		product	increasing gas	
		- Using the product	pressure	
		- Disposal or recycling of the	***Effect on	Equilibrium shifts to side with
		product	equilibrium of	-
			decreasing gas	
		Dynamic equilibrium	pressure	-
 Reversible 		Reactions that can go forwards as	***Effect on	of products – equilibrium
reaction		vell as backwards (with products	equilibrium of	
	_	urning back into reactants)	increasing	of reactants – equilibrium
*4	Т	he arrow used for reversible		shifts right, yield increases
	n	eactions.	***Effect on	of products – equilibrium
••Dynamic		he point at which the rate of the	equilibrium of	
equilibrium	f	orwards reaction and backwards	decreasing	of products – equilibrium
		eaction are equal, so the	concentration	
		oncentrations of reactants and		· • • •
		products stops changing.		
*Closed		lothing can escape, so dynamic		
systems	_	quilibrium can be reached.		
Open		Gases can escape so dynamic		
systems	e	quilibrium can't be reached.		
**Equation	1	Nitrogen + hydrogen ⇔ ammonia		
for making		$N_2 + 3H_2 \Leftrightarrow 2NH_3$		

Physics Summer Term Year 10

P5: Light and the electromagnetic spectrum

Lesson sequence

- 25. Electromagnetic waves
- Core practical Investigating refraction (CP14)
- 27. The electromagnetic spectrum
- 28. Using the long wavelengths
- 29. Using the short wavelengths
- 30. Dangers of EM radiation

1. Ele	ctromagnetic waves			
*Electromagnetic Transverse waves that travel at				
waves	the speed of light.			
 Speed of light 	300,000,000 m/s (3 x 10 ^s m/s)			
*Frequency	The number of waves that pass a point every second.			
*Wavelength	The distance in m from the top of one wave to the top of the next.			
*EM wave similarities	All are transverse, all travel at the speed of light.			
*EM wave differences	Different frequencies, different wavelengths.			
 Visible light 	The only type of EM radiation that our eyes can detect.			
**Interface	The boundary between two different materials.			
***Refraction and wave speed	Light travels at different speeds in different materials causing it to refract when hitting the interface at an angle.			
***Prisms and the colour	Different wavelengths slow down by different amounts			
spectrum	when they hit glass causing each colour to refract differently.			

**Infrared		Light split into a spectrum.	-	**Space	or rad	liat
discovery		Thermometer placed on every	t	elescopes	atmosp	phe
		colour plus next to red. Red			placed	in
		was hot, next to red was	Г		sing t	
		hottest.		Visible light		
2 Core proc	tical	Investigating refraction (CB14)		visible light	Inum	na
**Angle of		 Investigating refraction (CP14) gle between the incident ray 	- -	Infrared	Short	
incidence		d the normal	_ I	ses	remo	
**Angle of	_	gle between the refracted ray	ľ		(grills	
refraction		d the normal.			came	
*CP14 – Aim	_	explore how changing the angle	-	Microwave	Micro	
		incidence changes the angle of		ses	and s	
	ret	fraction	-	Radio wave	Radio	a
CP14 - Setu	p Pla	ace a glass block on a sheet of	U	ses		
	pa	per, point a beam of light from a	•	**Producing	Oscill	ati
	ray	y box at it, trace around the	r.	adio waves	produ	JCe
	blo	ock and draw in the light ray.	-	**Receiving	Radio) W
•CP14 -	Us	e a protractor to draw a normal,	r.	adio waves	rod ca	au:
Measureme	ntth	en measure the angles of	Г			
	ind	idence and refraction.	H	*Fluorescen	sing th	
*CP14 -		peat 5 times, from 5 different		Fluorescen	emi	
Variations	_	gles, including head-on.	-	Ultraviolet	Flue	
*CP14 -		e greater the angle of incidence,		uses		re
Results	th	e greater the angle of refraction.	ľ	aca -	wat	
3. TI	he ele	ectromagnetic spectrum	-	X-ray uses	Hos	
*EM		bish Memories Include Visiting		,	scar	-
spectrum	Ur X	Girlfriend	-	Gamma ray	Killi	
mnemonic			uses sur			_
*EM	Radi	o waves, microwaves, infrared,	an			tr
spectrum –		le light, ultraviolet, x-rays,	Г			
lowest to	gam	ma rays		•Infrared	5. EM n Surfa	
highest				angers	Suna	LE
frequency			- -	*Microwave	Absor	rhe
or energy	<u> </u>			angers	heat	
*EM		ma rays, x-rays, ultraviolet, le light, infrared, microwaves,	- -	*lonisation	High	-
-		o waves		lombación	to for	
highest	lacit	o waves			and c	
wavelength			-	Ultraviolet	Skin o	
*EM	The	full range of types of EM		angers		
spectrum		ation.	-	X-ray	Cance	er
•••EM		e EM radiation (visible, radio)		langers		
Radiation		es through the atmosphere,	-	Gamma ray	Cance	er
and the		t is absorbed.	d	angers		
atmosphere						

***Space	For	radiation absorbed by the		
		osphere, a telescope must be		
-	plac	ced in space.		
		g the long wavelengths		
 Visible light 	- IIII	umination, photography		
uses	_			
 Infrared 		Short-range communications (TV		
uses	re	remotes), fibre optics, cooking		
	(g	(grills and toasters), security		
	ca	meras.		
 Microwave 	M	icrowave ovens, mobile phone		
uses	an	d satellite communications.		
Radio wave	Ra	adio and TV signals.		
uses				
+++Producing	g Os	scillating electricity in a metal rod		
radio waves		oduces radio waves.		
+++Receiving	Ra	idio waves absorbed by a metal		
radio waves	ro	d cause electrical oscillations.		
		g the short wavelengths		
**Fluorescent		Absorbing ultraviolet and re-		
		emitting it as visible light.		
 Ultraviolet 		Fluorescent security inks, fluorescent light hulbs, starilising		
uses		fluorescent light bulbs, sterilising		
		water.		
 X-ray uses 		Hospital x-rays, baggage		
	_	scanners.		
•Gamma ray		Killing bacteria on food or		
uses		surgical instruments, detecting		
	- 1	and treating cancer.		
	6. E	M radiation dangers		
**Infrared		Irface heating causing burns.		
dangers				
	Absorbed by water causing it to			
dangers	heat up → burns under the skin.			
**Ionisation	High energy radiation causes ions			
		to form in our cells, damaging DNA		
		id causing cancer.		
		in cancer, snow blindness.		
dangers		an cancer, show binteness.		
*X-ray		incer		
dangers	100			
aangera	-			

Physics Summer Term Year 10

••Orbits and

energy

P6: Radioactivity

Lesson sequence

- 31. Atomic structure
- Subatomic particles
- 33. Electron orbits
- 34. Radiation from unstable atoms
- Nuclear reactions
- 36. Half-life
- 37. Background radiation
- 38. Dangers of radioactivity

1	. Atomic structure
Atom	Smallest stable particle of
	matter.
**Size of	2.5 x10 ⁻¹⁰ m in diameter
atoms	
*Element	Pure substance made of a single
	type of atom.
*John	Pictured atoms as tiny hard
Dalton	round balls, with different
	elements having atoms of
	different sizes.
*J.J Thomson	Discovered negative particles
	smaller than atoms called
	electrons.
++Plum-	Atoms as a sphere of positively
pudding	charged matter with negative
model	electrons scattered throughout
	it.
**Rutherford's	Fired alpha particles at very thin
experiment	gold leaf and used a special
	screen to record where they
	went.
**Rutherford's	Most alpha particles went
results	straight through, some
	scattered (changed path).
	Scattered particles hit a nucleus.
explanation	Nucleus must be small because
	most went straight through
	without hitting it.

2. Subatomic particles					
 Subatomic 	Particles smaller than atoms:				
particle	protons, neutrons and electrons.				
 Protons 	+1 charge, mass = 1, located in				
	the nucleus				
 Neutrons 	0 charge, mass = 1, located in the				
	nucleus				
*Electrons	-1 charge, mass = 1/1835, located				
	around nucleus in shells				
**Relative	Not the actual mass because no				
mass	units. Protons and neutrons have				
	same relative mass: their mass is				
	1.				
*Nucleons	Subatomic particles found in the				
	nucleus: protons and neutrons.				
	The number of protons				
the element	determines which element an				
	atom is.				
 Atomic 	The number of protons in an				
number	atom.				
	Also electrons.				
 Mass 	The number of nucleons (protons				
number	and neutrons) in an atom.				
 Number of 	Mass number – atomic number				
neutrons					
**Isotopes	Versions of an element with the				
	same number of protons, but				
	different number of neutrons.				
**Naming	Name followed by mass, e.g.				
isotopes	carbon-13, or symbol preceded				
	by mass, e.g. 13C.				
	3. Electron orbits				
**Orbits	The shells of electrons around				
Orbits	an atom.				
	an atom.				

Higher orbit = higher energy

Excited	when an electron has absorbed	
electrons	energy and jumped to a higher	
	orbit.	
+++How to	 When atoms absorb light 	
excite	 When electricity is passed 	
electrons	through gases	
	 Strongly heating a material 	
***Emitting	Electrons emit light when they	
light	drop back down an orbit. A	
-	bigger drop down releases	
	higher energy light.	
+++Absorbing	Light absorbed at specific	
light	wavelengths corresponds to	
_	energy gap in orbits: jumping up	
	one orbit = redder light, jumping	
	up several orbits = bluer light.	
***Emission	Pattern of bands of light at	
spectrum	specific wavelengths caused by	
	exciting a gaseous element with	
	electricity.	
***Absorption	Pattern of dark band in a	
spectrum	'rainbow' spectrum caused by a	
	gaseous element absorbing	
	some of the light passed	
	through it.	
+++Forming	When an electron is given so	
ions	much energy it leaves the atom	
	entirely creating a positive ion.	
**Ionising	Radiation that causes ionisation:	
radiation	(high energy) UV, x-rays, gamma	

When an electron has absorbed

**Excited

 4. Radiation from unstable atoms

 *Unstable
 An atom whose nucleus contains atom

 atom
 too much energy becomes unstable.

*Decay	When an unstable atom releases
	its excess energy by changing.
	Releases ionising radiation.
 Alpha 	Made of alpha particles: two
radiation	protons and two neutrons.
	Symbol: α or ⁴ 2He.
*Beta-minus	Made of beta particles: a fast-
radiation	moving electron. Symbol: β or
	_1e.
*Beta-plus	Made of positrons: particles with
radiation	same mass as electrons but a
	positive charge. Symbol: β ⁺ or ⁰ 1e.
*Gamma	Extremely short wavelength / high
radiation	frequency / high energy
	electromagnetic radiation.
	Symbol: γ.
 Neutron 	Fast-moving neutrons. Symbol: n.
radiation	
 Ionising 	From most to least is alpha, beta
power	gamma.
 Penetrating 	From most to least is gamma,
power	beta, alpha.
**Ionising vs	When the radiation ionises an
penetrating	atom it loses some of its energy.
power	Alpha ionises particles most easily
	so loses it energy most quickly,
1	and vice versa for gamma.

5. Nuclear reactions		
++Alpha	**Alpha Atomic number decreases by two,	
decay	mass number decreases by four.	
**Beta-	Atomic number increases by one,	
decay mass number stays the same.		
**Beta+	Atomic number decreases by one,	
decay	mass number stays the same.	
++Gamma	Atomic number and mass number	
decay	unchanged.	

Physics Summer Term Year 10

		1		
**Neutron		mic number stays the same,		
decay	mass number decreases by one.			
+++Writing	 Write in what you know 			
nuclear	 Balance the mass and atomic 			
equations	number			
	-	Work out the symbols to match		
		the numbers		
		6. Half-life		
•Half-life				
nall-life				
		undecayed atoms in a sample to		
		decay. Stays constant for each isotope.		
*Half-life and Less stable → shorter half-life				
stability		More stable \rightarrow longer half-life		
*Half-life and		Shorter half-life → more active		
radioactivity		Longer half-life → less active		
*Becquerels, Ba		The unit of radioactivity: 1 Bg = one decay per second.		
**Half-life		x-axis = time, y-axis =		
graph		radioactivity. The line curves		
graph		downwards but never touches		
		the x-axis.		
++Determin	**Determining Pick two points on the y-axis,			
		one half of the other, trace		
graph		along to the line and down to		
8. apri		the time. Half-life is the		
		difference in the time.		
++Calculati	ons	 Divide time by half-life to 		
with half-lif		give a number of half-lives		
	 Forwards in time: halving 			
		 Back in time: doublings 		
1		Sack in time, doublings		

7. Background radiation

Background	Low levels of ionising radiation			
radiation	that	we are constantly exposed to.		
 Radon gas 		biggest source of background		
	radiation: a radioactive gas			
	pro	duced by some rocks in the		
	gro			
*Other		d, hospitals, nuclear power		
sources		ustry, space (cosmic rays)		
 Artificial 		5: 14% hospitals, 1% nuclear		
sources		istry		
••Geiger-		d to measure radioactivity,		
Müller (GM)	produce a click each time			
tube		ation passes through it.		
**Count-	The number of time a GM tube			
rate	detects radiation each second.			
**Measuring				
background	readings and then calculate the			
radiation	average (mean).			
**Measuring	· · · · · · · · · · · · · · · · · · ·			
the activity	background radiation.			
of a source				
*Dosimeter	A badge that changes colour in			
	-	oonse to radiation exposure.		
*Dose	The amount of radiation received.			
8. Dangers of radioactivity				
 Mutations 		DNA damage caused by		
		ionising radiation, can lead to		
		cancer.		
**Repairing		Cells contain proteins that can		
damage		repair DNA damage as long as		
		the radiation dose is low		
		enough.		
**Minimising		 Wear protective clothing 		
radiation risk		 Handle with tongs 		
		 Don't point at people 		
		- Limit time		
		 Use protective shielding 		
		 Wear dosimeter badges 		
**Nuclear power		There is a small chance of		
risks		accidents causing radioactive		
		sources to escape		
**Irradiation		Exposure to radiation, stops		
		when the source of radiation		
1		is removed.		

**Contamination	When particles of radioactive	
	substances are on or in the	
	body.	
**Risks in	Using radioactivity carries	
perspective	serious risks, but so do many	
	other things, so it is safe to	
	use as long as it is treated	
	with caution.	

Geography Summer Term Year 10

Geography Summer Term Year 10

Case study – Dawlish Warren sand spit

Location = south coast of Devon.

Spit information = extends 2km north-eastwards of the Exe estuary. Popular tourist destination. Local Nature Reserve 1978 which became national in 2000.

Physical factors altering the spit = originally two spits which joined due to erosion enclosing the Greenland lake. High spring tides and strong winds (storm surges) move sediment to create the southern/eastern extent. Erosion has caused the spit to retreat, 2013-14 storms caused 5m of sand to be lost.

Human factors altering the spit = housing developments since 1930. A range of coastal defences employed due to storms including a sea wall, sand dune stabilisation, rock armour, gabions and arovnes.

Protecting the spit = Dawlish Warren Beach Management Scheme spending £14million to prevent flooding to 2900 properties and shelter the railway.

Case study – The River Dee (Afon Dyfrdwy)

The upper course of the River Dee is 460m above sea level on the slopes of Ddaullt in Snowdonia. After 110km, the River Dee meets the Irish Sea near Chester.

Importance of the River Dee = 94% of the catchment is rural used for farming, pasture and forestry. Source of water for 3million people, Supports habitats, Estuary is famous for fishing,

Human factors changing the river = two reservoirs were created to meet water demands, removing water from the river to control the flow and be stored. Embankments created to protect farmland, 8km of the river experienced channelization to increase discharge.

Physical factors changing the river = periods of drought and heavy rainfall alter the amount of erosion and discharge in the river. This is set to change with climate change.

Flooding in the River Dee catchment = the Environmental Agency predicts that by 2100 flood risk in the area will increase due to an increasing population, urban development and climate change. This will cause the number of properties at risk from a 1% fld event to rise from 4200 to 6400.

RE Judaism Unit 1 Belief and teachings: The Almighty

How would these beliefs on the almighty affect the lives of Jewish people today?

Liberal and Reform

-Torah must be interpreted to help with modern issues. -Torah = inspired by God. - There is only one God, who we have a personal relationship with, this is more important.

Orthodox Tradition and following the Torah is very important. Torah = literal word of

Almighty: Having complete power; omnipotent to describe God/divine being.

> Understanding the Almighty is make it is easier for us to b We believe reciting the Shema reinforces the importance of (Understanding God as a Creat and judge helps us to act in the with justice and Mer

Torah = literal word of God. Only act in ways said by the Torah, so that God will judge them favourably. God is a law giver so we must follow tradition.	Jews believe that the name of God is so or writter	Jews believe that the name of God is so holy that it must not be spoken or written. Jews use other names for God such as HASHEM with means 'The Name'.			
	ONE	CREATOR			
nt. A word used	 God is a single unity who is whole, complete and invisible. God is the only being to whom Jews pray to. The Shema is the most important prayer for Jews and is only one of two prayers commanded in the Torah. It is recited twice daily. 	 Only God took part in the creation of the universe. This is illustrated in Genesis 2:7 <u>'And Hashem God formed the man of dust from the</u> <u>ground, and he blew into his nostrils the soul of life; and</u> <u>man became a living being'.</u> 			
	LAW GIVER	JUDGE			
is many ways be closer. ha twice a day f God as One. ator, Lawgiver e image of God ercy.	 The best example of God as a lawgiver is in his gift of the Torah- The Law- to Moses on mount Sinai. God gave Jews this law when they were freed from slavery so that they could lead a good life. Jews believe that they are the children of God- he is father like. Only God has the power to judge, save and destroy 	 Judaism is often considered a religion of strict law. God's justice is tempered with his mercy and both of these are perfectly balanced. When Moses accepted the Law they formed a COVENENT to keep it Jews believe that they are judged on how well they keep both the moral and ritual laws. 			

Like Christianity, Judaism is a MONOTHESTIC religion- meaning that they

only believe in ONE God.

The central religious texts and called the TENAKH and the TALMUD.

The Hebrew name for God is YAHWEH; meaning 'Lord'

RE Judaism Belief and teachings: Shekhinah

The Shekinah can be felt by doing through worship, study, prayer.

<u>Worship:</u> Gold told Moses to build a temple to worship him. In synagogues people come together as a community to feel God's presence.
 <u>Study:</u> Studying the Torah is considered an act of worship, it connects people to God's word.

Prayer: When Jews pray together as a community they believe God is with them. 'Whenever ten are gathered for prayer, there the Shekhinah rests.'

 Moses was surrounded by the Shekhinah when he received the Torah, this means it is directly from God – Gods words.

Judaism and why lot of Jewish

people live in Israel.

• Jewish people are aware they may experience Shekhinah at any time.

RE Judaism Belief and teachings: Messiah

Thorowill be needed	'Anointed one'. Chosen by God to fulfil His purposes				
There will be peace among all nations Isaiah 2	The Jewish people dreamed of a day when they would have their land and freedom back. 1500 years before Jesus was born, God had promised that he would send them a special				
The whole world will accept the Jewish God and Jewish religion Isaiah 2	person to save them. He would be like Moses and would be from their own people. So, he would be a good, brave leader and would be Jewish. He would be specially chosen and "anointed" by God.				
There will be no sin or evil as everyone will obey the commandments Zephaniah 3	Messiah is a Jewish word and idea. Anointing someone's head with oil is a sign that they are holy and have been dedicated to God. In Old Testament times, (before Jesus) Jewish kings				
There will be justice and prosperity throughout the world	were anointed with oil to show that they had been specially chosen by God to lead and care for His people.				
Isaiah 11 The temple will be rebuilt in Jerusalem Ezekiel 37	 Essential belief based on scripture e.g. Tenakh In prayer (recited three times a day) Jewish people pray for the coming of the Messiah. The idea of a Messianic age has encouraged Jewish people (especially Reform Jews) to join in 				
All Jewish people will return from exile to Israel Jeremiah 23	political and social causes, to promote justice and peace.				
	 It is one of thirteen principles of faith written by Maimonides (medieval rabbi) which are a summary of Jewish faith. 				

RE Judaism Belief and teachings: The covenant at Sina

A Covenant is an agreement between two parties, which benefit both sides. Both parties need to keep certain conditions or fulfil obligations.

What does this mean for Jews?

For Jews, this agreement is between God and the Jewish people.
It is an agreement formed in love and creates an important relationship.
A covenant can only be created and sealed in Judaism with an Oath

Summary of Moses' Life

Moses grew up in the household of the Pharaoh, after being rescued from the River Nile.

He later discovered his Jewish heritage and had to leave Egypt after killing the Egyptian taskmaster.

✤God appeared to Moses in the form of a burning bush and told him to return to Egypt to lead the Jewish people out of slavery to freedom. He spoke to the Pharaoh and triggered ten plagues.

The final plague prompted Pharaoh to allow Moses to leave with the Jewish people. He crossed the red sea to freedom and took his people to Mount Sinai, where he received the Ten Commandments (Decalogue)

Why are the events in his life important?

The Torah states that on Mount Sinai, God made a Covenant with the Jewish people. It was different to previous Covenants because it stated that **'any Jew who does not follow the agreements would be** punished' (Deuteronomy 28:15-68)

Key facts about the Covenant:

The Covenant identified the Jewish people as the chosen people of God.

The introductory instructions were the Ten Commandments, which Moses inscribed on stone. These commandments are important because they teach the Jewish people how to live and obey God.
God gave the Jewish people the Torah to help them to live an obedient life. These are still important today.

According to tradition, every Jewish soul that would ever be born was present at that moment, and agreed to this covenant.

Describe Moses' relationship with God.

- God put his trust in to Moses to complete this important job, and in return Moses was loyal and faithful to God.
- Moses had to gain strength from God, and inspire people who were weak and had little faith. This implies that God gave Moses the **courage and determination** to help and inspire others.
- God **revealed** himself to Moses e.g. burning bush, which shows they had a **personal relationship**.
- Moses is referred to as a 'loyal servant' which shows us he was obedient and listened to God's instructions.

Why is it important

today?

- It teaches Jews how to live a Good life.
 - It contains the laws that they need to follow.
- It was a promise made to God.
- ✤ It was a gift from God.
- It proves that God exists.
- It is an agreement that cannot be broken.
- Jews were the chosen people.

RE Judaism Belief and teachings: The covenant with Abraham

Abraham founded Judaism.

His son Isaac, and his grandson Jacob and known as PATRIACHS, and are both the physical and spiritual ancestors of Judaism.

Abraham questioned his Father's faith and came to believe that the universe was the work of a single creator.

God calls Abraham to leave his home and family to travel to the promised land.

In reward, he said, 'I will make of you a great nation; I will bless you, and make your name great, and you shall be a blessing' (Genesis 12:1-4)
God blessed Abraham and his wife Sarah with a son called Isaac to fulfil the promise so the nation of Israel could be created. This was a miracle, as they were old and had tried for children for many years.
This was a reward for remaining faithful. They lived happily for many

years.

God told Abraham to sacrifice Isaac: Both Abraham and Isaac were willing to do this, but at the last moment an angel was sent to stop the sacrifice.

It was stopped because the test was not about sacrificing a child, but

to show obedience to God.

The three covenants made by Abraham..

In the second covenant G-d promises children to Abraham and descendants more than the starts. G-d also repeats the promise of land. Abraham had so much faith in G-d that he left his home in Ur (Iraq) with his family and set out on a long journey to a new land because he believed G-d wanted Him to do so.

In the third covenant G-d makes promises to Abraham of blessings and redemption but requires that all male Jews are Circumcised at the age of 8 days old.

How does the promised land affect Jews today?

- The land of Israel remains central to Judaism and many laws are tied to the Land of Israel and can only be implemented there.
- Prayers for a return to Israel and the state are included in daily Sabbath prayers and festivals.
- Living outside of Israel is viewed as exile by some Jews.

RE Judaism Belief and teachings: Sanctity of life

How it may affect someone today?

1				
•	•	1	-	Y
5	ļ	2	5	
1	Ī	I	ľ	

- A person who is ill is not permitted to fast during Yom Kippur. • Doctors are allowed to answer emergency calls on Shabbat.
- Abortions to save the life of the mother are mandatory. The unborn child is not considered equal to the life of the mother.
- Jews are not permitted to do anything that may speed up their death, even if it means to prevent their own suffering. Euthanasia, suicide and assisted suicide are strictly forbidden.
- It is sometimes permissible to turn off a life support machine.

Pikuach Nefesh = the Jewish principle that states the preservation of human life overrides any other Jewish rule.

This means that when a persons life is in danger, any other commandment in the Torah becomes unimportant, and that **person's life must come first**. Judaism not only allows them to break the commandments to **save a life, but INSISTS they do.** The only exceptions to this are murder, idolatry, incest and adultery.

Divergent understandings

- It is impossible for every Jew to agree on all of the teachings because each situation and scenario can be complex and **evoke different emotions**.
- Orthodox Jews tend to be stricter on the principle of Pikuach Nefesh.
- Judaism does not support assisted dying in any form as human life is sacred.

Whoever destroys

one life is as if he

destroyed a whole

world, and whoever

preserves a life is as

if he preserved the

whole world.

Abortion = Orthodox Jews only permit it to save a mothers life, for mental health reasons or in very dangerous conditions. Reform Jews may allow other reasons, and would take perhaps a less strict approach about when an abortion is acceptable.

Organ donation = Reform Jews see this as okay, and necessary to save a persons life. Orthodox Jews tend to say it is not okay. Difficulties arise in defining death because most organs need to be transplanted before the heart stops beating, which suggest their removal causes death. There is ongoing discussion about what is acceptable. "Thou shalt not kill." 'you shall not stand aside while your fellow's blood is shed.' Leviticus 19:16

RE Judaism Belief and teachings: Moral principles and the mitzvot

The Ten commandments are rules about life and behaviour. However, rabbis later worked through the text and realised that there are 613 commandments. These are known as the 613 mitzvot. They include the 10 commandments.

Importance for Jews today

Jewish people have their own set of rules, the are called Mitzvot.

- Jews believe the study of the Torah and Talmud is an act of worship and that the **divine presence** of God can felt in this.
- Rabbi's continue to study the different Mitzvot.
- This makes Judaism a living religion that considers modern day issues, and tries to adapt and interpret the scripture.
- Many laws are **no longer practiced** today, such as animal slaughter.
- The Talmud is only a starting point for difficult scenarios.
- There are disputes among different Rabbi's about controversial Mitzvot, as they adapt to modern challenges.

The Mitzvot between humans

- Mitzvot = good deed. The list of commandments that Jews must follow include directions on how they should behave well towards other humans.
- These are referred to as acts of kindness:
- Visiting the sick
- Comforting mourners
- Feeding the hungry
- Clothing the poor

The Mitzvot between humans and the Almighty

- Judaism is based on following the Mitzvot and Jewish people believe carrying out the commandments are central to Jewish life.
- What God requires.
- The laws are **gifts** from God.
- Following the Mitzvot is a way to thank God after he **rescued them** from slavery in Egypt.
- Deepen their relationship with God.
- Show God they **trust and respect** him = they will be **blessed**.
- Reform Jews = not all of the mitzvot need to be followed literally.

CALCUTTA

RE Judaism Belief and teachings: Life after death

ST TERESA